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The properties of solid states, biophysical materials, neuronal circuits, and equilibrium states of a many-
body system can be studied by using techniques in statistical physics. It has been common practice to represent
a system composed of binary state units by using an Ising spin network where each unit has symmetric �−1,1�
states. However, the asymmetry or symmetry of the binary states of the units can affect the property and
ergodicity of the system, but better understanding of the quantitative difference is still needed. We compare
systems of binary units with symmetric or asymmetric states. The network has spatially modulated interaction
with quenched randomness. We can bridge the Ising spin network and McCulloch-Pitts neuron network and
analyze the stability of the system via replica method by introducing an interpolating parameter. The effects of
the asymmetry states affect the multistability of the system and the stability of replica-symmetry solutions.
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I. INTRODUCTION

The range of applications for statistical physics has ex-
panded and now covers the fields of information science,
communication theory, learning theory, and neuroscience �1�.
In studies on the properties of many-body systems composed
of binary-state units, it has become common practice to rep-
resent the binary state as �1 of the spin, and to analyze the
system as an Ising spin system. The memory capacity and
basin of attraction of associative neural networks have been
studied as Ising spins systems �2–4�. On the other hand, in
the field of neural networks, a neuron with a binary state of
�0, 1� is called McCulloch-Pitts neuron and has an asymmet-
ric state. Both Ising spins and McCulloch-Pitts neurons are
binary-state units, therefore a transformation of variables ex-
ists so that two models become equivalent if the connectivity
is homogeneous. However, when a network has quenched
randomness as is seen in the Sherrington-Kirkpatrick �SK�
model, or in the associative memory models, equivalent
transformation of the variables exists unless the external
fields of each unit are heterogeneous. Therefore, the effect of
quenched randomness can have a different effect on the mac-
roscopic properties of a system, depending on the symmetry
of the states of the units.

For example, sparsely encoded associative memory
learned with the covariance rule has maximum storage ca-
pacity when the Hamiltonian is described by asymmetric
states �5�. The covariance rule has bias term a which controls
the sparseness of the population activity or population firing

rate. The maximum storage capacity is obtained when Ising
state Si is transformed into Si−a in the Hamiltonian, there-
fore this transformation introduces asymmetry into Ising spin
interactions. Those sparsely encoded associative networks
that are tuned to maximize the storage capacity have diverg-
ing memory capacity as the population firing rate per
memory pattern approaches zero �6,7�. In contrast, an
equivalent network with Ising spins with symmetric interac-
tion has a finite memory capacity �8�.

In the visual cortex of mammals, many of the neurons in
the primary visual cortex have direction and orientation se-
lectivity �9�, and in certain species, neurons with similar se-
lectivity cluster and form a column like structure �10�. Fur-
thermore, in the prefrontal cortex of monkeys, there are
neurons that are active during the spatial memory task. De-
pending on the direction of the visual queue position, they
maintain their activity even after the external stimulus is off.
One possible mechanism to explain such activities is the
Mexican-hat-type network where the recurrent interaction
forms nearby excitation and distal inhibition �11�. This type
of recurrent interaction facilitates the bump activity �locally
activated region�, and the stability of the bump activity has
been studied in several neuron models ranging from analog
neurons �12–15� to spiking neurons �16,17�.

Most of the Mexican-hat-type networks have neutrally
stable states due to the homogeneous assumption of the con-
nectivity rule or neuron properties throughout the population.
Due to this neutral stability, the spatial position of the bump
states can be easily displaced by several types of noises �16�.
When there is moderate heterogeneity in each neuron prop-
erty, the position of the bump tends to drift, resulting in the
loss of spatial working memory �18�. However, the Mexican-
hat-type networks with quenched randomness in the Ising
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spin network �19� have shown that large quenched random-
ness is actually advantageous because it helps to maintain the
position of the spatial working memory by having an infi-
nitely large number of local minimums in the energy land-
scape �19�. However, it is still not fully understood how the
results from the Ising spin networks can be translated into
the McCulloch-Pitts model networks.

In this paper we used a network with the Mexican-hat
interaction with quenched randomness as the model to study
the effect of symmetry and/or asymmetry of the binary states
of the units on the macroscopic states of the network. We
bridged the Ising spin and the McCulloch-Pitts network by
introducing an interpolating parameter. We analyzed this sys-
tem via a replica trick. In Sec. II, the details of the model are
given. In Sec. III, the replica-symmetry �RS� ansatz are cal-
culated. In Sec. IV, the replica-symmetry breaking �RSB�
conditions are shown. In Sec. V, we show the numerical
solutions of the RS solutions with the support of Monte
Carlo simulations. Phase diagrams for both the Ising spin
and McCulloch-Pitts networks are also presented. In Sec. VI,
we conclude and give a discussion.

II. MODEL

We studied the macroscopic properties of a system com-
posed of many binary units interacting with symmetric, spa-
tially organized interactions with quenched randomness. We
assumed that each unit can be indexed based on its prefer-
ence to the external stimuli that is parametrized by a single
parameter �. The parameter � represents the direction or ori-
entation of the gratings of the visual stimuli �10�, or direction
of the motion to be stored in a short term spatial working
memory �20�. For simplicity, we set �� �−� ,��.

We also assumed that the interaction between units is spa-
tially organized in this parameter space so that the connec-
tivities had effectively Mexican-hat-type interaction. The
boundary of parameter space � is connected by using a pe-
riodic boundary condition. The symmetric interaction be-
tween the jth and ith units, J�i�j

�=J�j�i
�, is given as follows:

J�i�j
=

J0

N
+

J1

N
cos��i − � j� +

�

�N
z�i�j

, �1�

z�i�j
� N�0,1� . �2�

Here, J0 is the uniform ferromagnetic interaction, or spatially
uniform term, J1 is the Mexican-hat-type interaction, or spa-
tially modulated term, and z�i�j

=z�j�i
is a quenched noisy

interaction term derived from the Gaussian distribution with
mean 0, variance 1. A schematic picture of the network in
parameter space � is shown in Fig. 1.

The position of the ith unit in the parameter space is �i,
and we describe the binary state of the ith unit as S�i

. The
update rule of the model is

Prob�S�i
= � 1� =

1 � tanh��hi�
2

, �3�

hi = 	
�j��i

J�i�j
�S�j

− b� + h , �4�

where h is the external field, and � is the inverse tempera-
ture. The Hamiltonian of the system we will study here is

Hb�S� = −
1

2 	
�i,�j

J�i�j
�S�i

− b��S�j
− b�

− h	
i

�S�i
− b� �S�i

= � 1� , �5�

where S is the state of the N units, S= �S�1
,S�2

, . . . ,S�N
�. To

compare the Ising spin and the McCulloch-Pitts neuron net-
works, we have introduced a parameter b to interpolate the
two models. When b=0, H0�S� is equivalent to the Hamil-
tonian of the conventional Ising spin networks because the
state of a unit is symmetric, �S�i

−b�� �−1,1�. On the other
hand, when b=−1, the effective output is asymmetric, �S�i
−b�� �0,2�; this model is intrinsically equivalent to the
McCulloch-Pitts-type neuron models in which output takes
on the binary values of �0, 1�.

We note that, when �=0 �no quenched randomness in the
interaction�, the Hamiltonian in Eq. �5� is rewritten as

Hb�S� = −
1

2

J0

N
	
�i,�j

S�i
S�j

−
1

2

J1

N
	
�i,�j

S�i
S�j

cos��i − � j�

+ �J0b − h�	
�i

S�i
+ Nb
h −

J0b

2
� . �6�

The last constant term does not play any role in determining
the equilibrium state. The coefficient of the third term �J0b
−h� indicates that, the Ising and McCulloch-Pitts networks
become equivalent when h=J0b because the Hamiltonian
does not depend on b. This equivalence does not hold for
��0, and the purpose of this work is to understand how the
properties of a system change depending on parameter b, and
more specifically, to compare Ising spin networks �b=0� and
McCulloch-Pitts networks �b=−1�.

Sθ i

θi

Jθ i θ j

Sθ j

FIG. 1. Network model: N units indexed with �i� �−� ,�� on a
ring are interacting with symmetric J�i� j

interactions.
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III. REPLICA CALCULATION OF THE FREE ENERGY
AND ORDER PARAMETERS

In this section, we calculate the free energy per neuron
and relevant order parameters by using the replica method.
To calculate the partition function Z, let us circumvent aver-
aging ln Z by using

ln Z = lim
n→0

Zn − 1

n
, �7�

which allows us to compute ln Z from Zn as a partition func-
tion of n copies, replicas, of the original system, writing

Zn = TrS1TrS2
¯

TrSn exp
− �	
�=1

n

H�S���
= TrS exp
− �	

�=1

n

H�S��� , �8�

where � is the replica index running from 1 to n. The free
energy F=−�−1 ln Z is a function of the quenched connec-
tion noise �z�i�j

�. We obtain the actual value of F by averag-
ing F with the probability distribution of z�i�j

. We refer to
this average as the configurational average and write ��¯.
The configurational average of free energy is

��Zn = TrS� �
���

dq0
���

�

dm0
��

�

dmc
��

�

dms
�exp�−

N�2�2

2 	
���

�q0
���2 − 
N�J0

2
+ Nb2�2�2�	

�

�m0
��2

−
N�J1

2 	
�

��mc
��2 + �ms

��2� +
�1 − b2�2�2�2�N − n�n

4
+ L� , �9�

where

L = 	
�i
��2�2 	

���

�S�i

� − b��S�i

� − b�q0
�� + ��J0 + 2b2�2�2�	

�

�S�i

� − b�m0
�

+ �J1	
�

�mc
� cos �i + ms

� sin �i��S�i

� − b� + ��h + b�J0 − �2�2b�1 − b2��	
�

�S�i

� − b�� . �10�

Here we define the following order parameters:

m0
� = N−1	

i

S�i

� − b, q0
�� = N−1	

i

�S�i

� − b��S�i

� − b� ,

mc
� = N−1	

i

cos��i�S�i

� , ms
� = N−1	

i

sin��i�S�i

� , �11�

where m0 is the magnetization or mean firing rate, q0 is the
spin-glass order parameter, mc and ms are the order param-
eters that show how the spins are aligned in the same direc-
tion locally around �=0,� /2. The state of the network is
said to be a bump state, or locally activated, if mc or ms are
nonzero. We must note that mc and ms depend on the position

of the bump, but our interests are focused on the size and the
position of the bump. So we introduce the following trans-
formation to separate the size and position of the bump:

�m1
��2 = �mc

��2 + �ms
��2, �12�

	� = tan−1�ms
�/mc

�� . �13�

Replica-symmetry ansatz. We assume the replica symme-
try, which is q0

��=q0, m0
�=m0, m1

�=m1, 	�=	 and derive the
saddle-point equations for the replica-symmetric solution. To
arrive at an effective single-site problem, the Gaussian inte-
gral exp� a

2 �S�i
−b�2�=�Dz�i

exp��a�S�i
−b�z�i

�, where �Dz�i
= �2��−1/2�−



 exp�−z�i

2 /2� is operated to TrSeL,

TrSeL = TrS�
�i

� Dz�i
exp�
���q0z�i

−
�2�2

2
nq0 + �J0m0 + �J1m1 cos��i + 	� + �h + C�	

�

�S�i

� − b��
= �

�i

� Dz��exp��1 − b���i
� + exp��− 1 − b���i

��n exp
−
Nn�2�2

2
q0� , �14�

and

��i
= ���q0z�i

+ �J0m0 + �J1m1 cos��i + 	� + �h + C , �15�
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C = b�2�2�2bm0 + q0 + b2 − 1� . �16�

The replica-symmetry assumption simplifies Eq. �9� to

��Zn =� dq0dmodmcdms exp
−
Nn�n − 1��2�2

4
q0

2 −
Nn�J0 + 2b2�2�2

2
m0

2 −
Nn�J1

2
m1

2 +
�1 − b2�2�2�2�N − n�n

4
�

�exp�	
�i

ln
� Dz��exp��1 − b���i
� + exp��− 1 − b���i

��n�� . �17�

The free energy per neuron, ��f�=− 1
N �ln Z�=−limn→0

�Zn�−1
Nn is

evaluated in the thermodynamical limit. The summation of �i
is now replaced by an integral with �. The free energy per
neuron is

− ��f� =
�2�2

4
�1 − b − q0�2 −

�J0 + 2b2�2�2

2
m0

2

−
�J1

2
m1

2 +
1

2�
�

−�

�

d��
−





Dz ln�exp��1 − b����

+ exp��− 1 − b����� . �18�

The order parameters m0, m1, 	, and q0 are determined
through the following saddle-point equations:

m0 =� d�

2�
� Dz�tanh �� − b� , �19�

m1 =� d�

2�
� Dz cos�� − 	��tanh �� − b� , �20�

0 =� d�

2�
� Dz sin�� − 	��tanh �� − b� , �21�

q0 =� d�

2�
� Dz�tanh �� − b�2. �22�

IV. CALCULATION OF RSB CONDITIONS

The saddle-point equations in Eqs. �19�–�22� give the
equilibrium points �local minimum, maximum, and saddles�
in the free-energy landscape under the replica-symmetry
�RS� assumption. The stability of the RS solutions is given
by the eigenvalue of the Hessian matrix around a RS solution
�21�. The instability condition of RS solutions is called
replica-symmetry breaking �RSB� condition. To calculate the
RSB condition, we expand the free energy around a RS so-
lution up to the second order. We first rewrite the ��Zn
before n→0 as

��Zn � 1 + Nn
−
�2�2

2n
	

���

�q0
���2 −

�J0 + 2b2�2�2

2n
	
�

�m0
��2 −

�J1

2n
	
�

�m1
��2 +

1

Nn
ln TrSeL +

�1 − b2�2�2�2

4 � . �23�

By using the following transformation, y�����q0
��, x���K0m0

�, z���K1m1
�, where ��=��, K0= ��J0+2b2�2�2�, and K1

=�J1, the free energy per neuron can be written as

− ���f = lim
n→0

�Zn� − 1

nN
= −

1

2n
	

���

�y���2 −
1

2n
	
�

�x��2 −
1

2n
	
�

�z��2 +
1

Nn
ln TrSeL +

�1 − b2�2�2�2

4
, �24�

L = 	
�

�� 	

���

�S�
� − b��S�

� − B�y�� + �K0	
�

�S�
� − b�x� + �K1 cos�� − 	�	

�

�S�
� − b�z� + ��h − ���1 − b2��	

�

�S�
� − b�� .

�25�

From the saddle-point condition, the first-order derivative of free energy is zero � ��f�
�x� = ��f�

�y�� = ��f�
�z� =0�, therefore we can obtain

the expansion of ��f around the RS point in the following way. We defined �¯L0
=� d�

2��Dz exp�L0�, and L0 corresponds
to the L replica-symmetry �RS� case. Using x�=x+�, y��=y+���, and z�=z+��, the expansion of ���f around the RS
solution up to second order is
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���f = ���fL0
+

1

2
	�,�

�2f

�x��x��� + 	
���

	
���

�2f

�y���y�������� + 	
�,�

�2f

�z��z����� + 	
�

	
���

�2f

�x��y������

+ 	
���

	
�

�2f

�y���z������ + 	
�,�

�2f

�x��z����� �26�

=���fL0
+

1

2
	�,�
G���� + 	

���
	
���

G���������
����� + 	

�,�
G������ + 	

�
	
���

G�����
����

+ 	
���

	
�

G����
� ����� + 	

�,�
G�

����� , �27�

where G is the Hessian matrix. We have defined the super-
scripts and subscripts of G as follows; single Hessian sub-
scripts, G�, indicate the derivative of ��f with respect to the
ferromagnetic deviation x. Similarly, a couple of subscripts
with braces, G����, are with respect to y, and single super-
scripts of Hessian, G�, are with respect to z. The combination
of the replica gives 13 G values. Since the expression of each
term of the Hessian is complicated, we further introduce the
following definitions to simplify the expression of the Hes-
sian:

t0 =� d�

2�
� Dz�tanh ��� − b�3, �28�

r0 =� d�

2�
� Dz�tanh ��� − b�4, �29�

q1 =� d�

2�
� Dz�tanh ��� − b�2 cos�� − 	� , �30�

t1 =� d�

2�
� Dz�tanh ��� − b�3 cos�� − 	� , �31�

m2 =� d�

2�
� Dz�tanh ��� − b�cos�2� − 	� , �32�

q2 =� d�

2�
� Dz�tanh ��� − b�2 cos�2� − 	� . �33�

The coefficients of  that have the form of a RS solution
are

G�� = 1 − K0�1 − b2 − 2bm0 − m0
2� � A , �34�

G�� = − K0�q0 − m0
2� � B . �35�

The coefficients of  and � cross terms have the form

G����� = ���K0�− �1 − b2�m0 − 2bq0 − m0q0� � C ,

�36�

G����� = ���K0�− t0 − m0q0� � D . �37�

The coefficients of � have the form

G�������� = 1 − ����2��1 − b2�2 − 4b�1 − b2�m0 + 4b2q0 − q0
2�

� P , �38�

G�������� = − ����2��1 − b2�q0 − 2bt0 − q0
2� � Q , �39�

G�������� = − ����2�r0 − q0
2� � R . �40�

The coefficients of � and � cross term have the form

G����
� = ���K1�− �1 − b2�m1 − 2bq1 − m1q0� � C�, �41�

G����
� = ���K1�t1 − m1q0� � D�. �42�

The coefficients of � have the form

G�� = 1 − K1
1 − b2

2
− bm0 − bm2 − �m1�2� � A�, �43�

G�� = − K1
q0

2
+

q2

2
− �m1�2� � B�. �44�

Finally, the coefficients of  and � cross term have the form

G�
� = − �K0K1�− 2bm1 − m0m1� � E , �45�

G�
� = − �K0K1�q1 − m0m1� � F . �46�

A. RSB conditions of SK-type network (J1=0)

First, we take into consideration a network model without
spatially organized connectivity �J1=0�. The first eigenvalue
we take into account is the longitudinal mode where the
perturbations are symmetric to the interchange of the repli-
cas. The eigenvalue �1 in the longitudinal mode satisfies

� A − B − �C − D�
2�C − D� P − 4Q + 3R

�x = �1x . �47�

Therefore, the eigenvalue �1 is given as
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�1 = ��A − B� + �P − 4Q

+ 3R� � ���A − B� − �P − 4Q + 3R��2 + 8�C − D�2�/2.

�48�

In the limit of n→0, A−B, and P−4Q+3R represent the
following:

A − B =
1

J0 + 2b2��2

�2f

�m2 , P − 4Q + 3R = −
2

��2

�2f

�q2 .

�49�

Therefore, a necessary condition of RS stability in longitudi-
nal direction is

�2f

�m2 � 0 and
�2f

�q2 � 0. �50�

When the above necessary condition is satisfied, the eigen-
value of a longitudinal mode is always positive and RSB in
the longitudinal mode does not occur. However, this argu-
ment is not always true because �2f

�m2 can be negative as we
will show later. One way to check the stability of a RS so-
lution in the longitudinal direction is to calculate Eq. �48�
numerically. However, we can show that RS solutions are
always stable to the perturbation in longitudinal direction if
we numerically solve the saddle-point equations correctly.
The details are shown in the Appendix. The other type of
perturbation is symmetric under the interchanges of all the
replicas but one. This eigenvalue is equivalent to �1 for n
=0.

We then look for an eigenvector that has ���=c for spe-
cific replicas � ,�, and ���=���=d, for any �, and ���=e for
the other replicas. This mode is called the replicon mode, and
the eigenvalue �3 for the replicon mode at n→0 limit is

�3 = P − 2Q + R . �51�

From Eq. �51�, the replica-symmetry breaking �RSB� condi-
tion in the replicon mode is

1

�2�2 = �
−�

� d�

2�
� Dz sech4��H�z,��� . �52�

B. Mexican-hat-type network (J1�0)

When we introduce the Mexican-hat-type interaction J1,
the eigenvalue of the longitudinal mode becomes compli-
cated, and here we just show the result. The eigenvalue �1 of
the longitudinal mode is given by the solution of the follow-
ing equation:

�1
3 − S�1

2 + T�1 + U = 0, �53�

where

S = �A − B� + �A� − B�� + �P − 4Q + 3R� , �54�

T = �A − B��A� − B�� + �A� − B���P − 4Q + 3R� + �P − 4Q

+ 3R��A − B� − �E − F�2 + 2�C� − D��2 + 2�C − D�2,

�55�

U = 2�A − B��C� − D��2 + 2�A� − B���C − D�2

+ �P − 4Q + 3R��E − F�2

− �A − B��A� − B���P − 4Q + 3R�

+ 4�C − D��E − F��C� − D�� . �56�

Again, a way to check the stability in the longitudinal mode
is to directly solve Eq. �53�, but we can show that �1 is
always positive in a certain condition, as shown in the Ap-
pendix. The condition where the eigenvalue of the replicon
mode becomes zero �RSB condition� is equivalent to Eq.
�52�.

V. RESULTS

A. No spatial modulation case (J1=0)

First, we compare the Ising spin and McCulloch-Pitts
neuron models without spatially modulated interaction �J1
=0�. As the parameter b changes, the external field also ef-
fectively changes �Eq. �6��. To remove this effect, we set h
=−J0b throughout this paper. In Fig. 2, we show the analyti-
cal calculation of m0 obtained from Eqs. �19�–�22� and the
simulation results. The simulation results support our theo-
retical calculation for both the Ising spin model �b=0� and
McCulloch-Pitts neuron model �b=−1.0� at 1 /��=0.7 and
J0 /�=1.5. The qualitative difference is that the second-order
transition for the Ising spin model �b=0� is not observed in
the McCulloch-Pitts neuron network.

Networks of McCulloch-Pitts neurons have different con-
straints due to its asymmetric states and the conventional
definition of the phases in an Ising spin network cannot be
directly adopted. For example, McCulloch-Pitts networks
can have a bistable region at low and high m0 values �Figs.
2�b� and 2�c��. The ferromagnetic �F� state in an Ising spin
network also has bistability at m0, and therefore we have
defined F phase as the bistability in the m0 value.
McCulloch-Pitts networks can also have monostable states in
the m0 value, but q0 is always positive. The only distinction
between the spin-glass �SG� state and the paramagnetic �P�
state is whether RSB occurs or not. Thus we define the SG
state as monostability in m0 value with RSB, and the P state
as monostability in m0 value without RSB �RS stable�. We
will introduce a spatially organized interaction J1 later in this
paper. For large J1, a network can have a localized �L� state
�m1�0�. To summarize, we define the state as follows so
that we can use the same definitions for both models: For the
ferromagnetic �F� state, bistability in m0, and m1=0; spin-
glass �SG� state, monostability in m0, m1=0, and RSB oc-
curs; paramagnetic �P� state, monostability in m0, m1=0, and
RS stable; localized �L� state, m0�0 and m1�0; In F and L
states, there can be a RS stable or a RSB region.

By using the above definition of the states, we draw the
phase diagram in Fig. 3 at various control parameters b. First
the distinction between an Ising spin network and a
McCulloch-Pitts network is the wide range of the �2f /�m0

2

�0 region for b�0 cases �Figs. 3�b� and 3�c�� which is not
found in cases where b=0. For the better understanding of
this phenomena, we show the landscape of free energy at
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�J0 /� ,1 /���= �1.5,0.5� at various control parameters b in
Fig. 4. At the point where �J0 /� ,1 /���= �1.5,0.5�, the net-
work is always in the F phase for the whole range of −1
�b�0 and always has bistability. There are three intersec-
tions of a maximum q0 and extremal values of m0. The outer
two are the stable equilibrium states for these three cases.
When b=0, the outer intersections are made by the maxi-
mum line of q0 and minimum lines of m0. As b deviates from
zero, the intersection is formed by the maximum of q0 and
maximum of m0 and the second derivative of free energy by
m0, �2f /�m0

2, changes from positive to negative �Fig. 4�c��.

For an Ising spin network, �2f /�m0
2�0 is always satisfied

and there is no need to check Eq. �48�. However, for the
McCulloch-Pitts neuron network, we found that �2f /�m0

2

�0 is not always satisfied and we must take into account the
necessary and sufficient condition in Eq. �48� in addition to
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FIG. 2. Typical value of m0 for various parameters of b, ��, and
J0 /� for J1=0 �homogeneous� network. Solid lines are analytical
calculations from Eqs. �19�–�22�. The error bars were obtained from
the 11 samples of simulations. �a� b=0, 1 /��=0.7. �b� b=−1.0,
1 /��=0.7. �c� b=−1.0, J0 /�=1.5.

0

1

2

3

4

1/
β∆

0 1 2 3 4
J0/∆

b= -1.0

0

1

2

3

4

1/
β∆

b=-0.5

0 1 2 3 4
J0/∆

0

1

2

3

4

1/
β∆

F
SG

P

b=0

0 1 2 3 4
J0/∆

F

SG

P

SG

P

(C)

(B)

(A)

∂2 f
∂ m2 <0 F

FIG. 3. Phase diagrams of networks without Mexican-hat inter-
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the solid lines are the ferromagnetic phase. The gray broken lines
represent the AT lines. The region under thin dashed-dotted lines are
with �2f

�m2 �0. The region with �2f
�m2 �0 expands as b decreases.
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the standard RSB condition in Eq. �51�. We, however, found
that we have proof that RS solutions are always stable in the
longitudinal direction. Therefore, this apparent distinction of
�2f

�m0
2 between the Ising spin and McCulloch-Pitts networks

did not result in a qualitative difference, but we reported this
issue because conventional arguments often consider the
necessary condition of Eq. �50� only, and in general, such
arguments cannot justify the stability of the RS solution in
the longitudinal direction. Our proof in the Appendix gives

general reasoning as to why we do not need to take into
account the RSB in the longitudinal direction.

B. Networks with Mexican-hat interaction and quenched
randomness (J1Å0)

In this section, we take into consideration a network with
spatially modulated interaction �J1�0� with quenched noise.
Now there are three order parameters, and the phase diagram
is three dimensional. For simplicity, we fixed 1 /��=0.3 and
study the phase diagram in this section.

In Fig. 5, we show the analytical calculation of the order
parameters m0 and m1 in the Ising spin network �b=0� at
J1 /�=5.5. To clarify the hysteresis in this system, let us start
by introducing the following two cases: Increasing J0 /�
�Fig. 5�a�� and decreasing J0 /� �Fig. 5�b��. When the uni-
form interaction term J0 is relatively small, the L phase is
stable. The phase transition point depends on the history as
shown in Figs. 5�a� and 5�b�. Figure 5�c� is a summary of
these results to show the bistable region shown as L+F.

Next, we show the phase diagram in the Mexican-hat-type
network composed of Ising spins �b=0�. The RSB regions
calculated from Eq. �52� are shown in the shaded region in
Fig. 6. In the dark shaded region, the RSB occurs only in the
L phase.

Finally, we studied the McCulloch-Pitts neuron networks.
Figure 7 shows the analytical calculation of the order param-
eters m0 and m1 at J1 /�=5.5. This network also shows hys-
teresis, and to clarify the difference in phase transition
points, we again show the analytical calculations by gradu-
ally increasing and decreasing J0 /� in Figs. 7�a� and 7�b�.
When the network starts from a localized state �L phase� and
J0 /� is gradually increased from zero, the phase transition
from the L to F phase occurs around J0 /��2.1. On the other
hand, when the network starts from a high J0 /� parameter,
the network has two stable, uniformly active states; high m0
and low m0. The high m0 state is regarded as an active state
for the neural network, and the low m0 state represents the
spontaneous, relatively low activity states. As J0 /� gradually
decreases, the high m0 state shows a phase transition in the L
phase around J0 /��1.6 which is slightly lower than the
transition from L to F. If the initial state of the network is the
low m0 state in F phase, it is stable until J0 /��0.8 and
finally makes a transition to the L phase. To summarize, there
are four network states as shown in Fig. 7�c�. A schematic
picture of the stable states is also shown above the figure; L
for the phase where localized activity state is the only stable
state. L+P represents the phase where the localized state and
paramagnetic state coexist. L+F is the phase where the lo-
calized state and the ferromagnetic �bistable m0� state coex-
ist. The F phase is the phase where the ferromagnetic state is
stable. We noted that depending on the parameters, it is pos-
sible that F phase makes a transition again to the P state for
very large J0 /� values �data not shown�.

The phase diagram of a McCulloch-Pitts neuron network
is shown in Fig. 8. The phase transitions are shown with the
solid lines, and Almeida-Thouless �AT� lines are shown with
dashed lines. As the localized interaction J1 /� increases, the
L phase becomes stable. As the uniform interaction J0 /�
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FIG. 4. The free-energy landscapes at �J0 /� ,1 /���= �1.5,0.5�.
�a� Ising spin model �b=0�. �b� b=−0.5. �c� McCulloch-Pitts neuron
model �b=−1.0�. The maximum value in the q direction is shown as
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increases, the F phase becomes stable. In between them,
there are two type of bistable or tristable phases. For the
lower J0 /� region, one finds the phase where the L state and
P state are stable �L+P�. For the higher J0 /� region, there is
a phase with the L state and F state �L+F�. In this L+F
phase, there are three stable states; low m0 and high m0 with
m1=0, and m0 ,m1�0. The AT line calculated from Eq. �52�
is shown in the shaded regions. In the dark shaded region in
the F phase, the RSB occurs only in the high m0 state.

VI. CONCLUSION AND DISCUSSION

In this paper, the stability of replica-symmetry ansatz in
the Ising spin and McCulloch-Pitts neuron networks were
compared. While studying the necessary and sufficient con-
ditions of the RSB, we found that a necessary condition to
ensure stability of the RS solution in the longitudinal mode,
which is often used in the literature �1�, is not satisfied in
asymmetric state systems. We studied the RSB condition in
the longitudinal mode and found that it will not occur neither
in the symmetric nor asymmetric state system. The proof on
this is outlined in the Appendix.

The effect of asymmetry of the binary state on the AT line
is not straightforward. For lower J0 /� values, RS solutions
are more stable for a relative noise level of 1 /��. On the
other hand, for larger J0 /� values, the RS solutions are less
stable for the same value of 1 /��.

In this paper, we have not considered the plasticity, or the
mechanism of generating symmetric noisy interaction in our
model. There have been several models of the formation of
stable orientation tunings and spatial working memory
�18,22�. Further analysis of such models and the experimen-
tal clarification of the neural substrates of learning would be
required for the better understanding of the stable informa-
tion representation in the cortex.
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FIG. 5. �Color online� Analytical calculation of order parameters
at b=0,J1 /�=5.5 intersection. Solid lines represent m0, and the
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APPENDIX: STABILITY OF LONGITUDINAL MODE IS
EQUAL TO THE STABILITY OF PSEUDODYNAMICS

In this appendix, we show that longitudinal RSB will not
occur. This is because the RSB condition in the longitudinal
mode is equivalent to the stability condition of the pseudo-
dynamics we use to search for the stable state. For simplicity,
we focus on J1=0, but it can be extended to any value of J1
using the similar arguments.

First, we solve the saddle-point equations of the following
free energy:

− ��f� = −
�J0 + 2b2�2�2

2
m0

2 +
�2�2

4
�1 − b − q0�2

+ �
−





Dz ln�exp��1 − b���� + exp��− 1 − b����� .

�A1�

It corresponds to the SK model when b=0, and the
McCulloch-Pitts model when b=−1. The saddle-node condi-
tion is

�f

�m0
= 0 = K0m0 − K0� Dz�tanh � − b� , �A2�

(A)

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3
J0 /∆

m1

m0

FL

(B )

J0/∆

FL+PL

(C)

J0/∆

m0

m1

L L+P FL+F

m
0,
m
1

0

0.5

1

1.5

2

m
0,
m
1

0

0.5

1

1.5

2

m
0,
m
1

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

m1

m0

m1

m0

m1

m0

m1

m0

m1m0

m1

m0

FIG. 7. �Color online� Analytical calculation of order parameters
at b=−1.0, J1 /�=5.5 intersection. The solid lines represent m0, and
dotted lines represent m1. The hysteresis reveals the bistable phase
in the midrange of J0 /�. �a� Local phase is stable until J0 /��2.1
as J0 /� is gradually increased, then the ferromagnetic phase be-
comes dominant. �b� Initially, the ferromagnetic phase has bistabil-
ity at low and high m0 values. When J0 /� is gradually decreased,
this bistability loses its stability at J0 /��1.6. �c� Overlay of �a� and
�b�. There is a bistable region with one local and one uniformly
active states around 0.8�J0 /��1.6, and a tristable region with one
local and two uniformly active states around 1.6�J0 /��2.1 for
this parameter set. The schematic positions of the stable states in the
m0-m1 space are also shown above.
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�f

�q
= 0 = −

��2

2
q +

��2

2
� Dz�tanh � − b�2, �A3�

where ��=��, K0= ��J0+2b2�2�2�. We solve this nonlinear
equations by using a gradient-descent method or pseudody-
namics as follows:

ṁ0 = −
1

K0

�f

�m0
= − m0 +� Dz�tanh � − b� , �A4�

q̇ =
2

��2

�f

�q
= − q +� Dz�tanh � − b�2. �A5�

Note that the solution is searched for in the direction of the
gradient descent in the m0 direction, and for the gradient
ascent in the q direction. This gives us the saddle-node points
of the free energy f . Now, let us note that a dynamical sys-
tem

x = F�ẋ� �A6�

has a stable equilibrium point x*, if F�x*�=0 and all the
eigenvalues of the Jacobian matrix J have negative real part.
For a two-dimensional system, the Jacobian matrix is

J = �
�F1

�x1

�F1

�x2

�F2

�x1

�F2

�x2

� . �A7�

Therefore, in our case, the Jacobian matrix J evaluated at a
stable solution �m

0
* ,q*� is

J = �−
1

K0

�2f

�m0
2 −

1

K0

�2f

�m0�q

2

��2

�2f

�m0�q

2

��2

�2f

�q2
� = K2F̈ ,

where

K = �1/�K0 0

0 �2/��
�, F̈ = �−

�2f

�m0
2 −

�2f

�m0�q

�2f

�m0�q

�2f

�q2
� .

�A8�

The Jacobian matrix J must have negative eigenvalues if our
solution is stable for the dynamics of Eqs. �A4� and �A5�. In
practice, since we solve the dynamics forward in time, our
solution provides a Jacobian with negative eigenvalues.

Next, let us compare the condition of stability of the RS
solution in the longitudinal mode and matrix J. The RS
stable condition is that the following eigenvalue � has posi-
tive real part:

H� = � A − B − �C − D�
2�C − D� P − 4Q + 3R

�� = �� . �A9�

By using the relations A−B=K0
−1 �2f

�m0
2 , C−D

=−1 / ����K0� �2f
�m0�q , and P−4Q+3R=−2 /��2 �2f

�q2 , we
found that

H = � K0
−1 �2f

�m0
2 1/����K0�

�2f

�m0�q

− 2/����K0�
�2f

�m0�q
− 2/��2 �2f

�q2
� = − K�F̈K .

�A10�

The relationship between J and H is

− K−1JK = − K�F̈K = H . �A11�

Here we have used the relation K�=K. Therefore, the rela-
tionship between J and H is the similar matrix with a chang-
ing sign. The similar matrices have the same eigenvalues,
and the coefficient of −1 changes the sign of the eigenvalues.
This means that, if a Jacobian matrix J has negative eigen-
values �stable solution of pseudodynamics�, the Hessian ma-
trix H should have positive eigenvalues �local minimum of
free energy in the direction of the longitudinal mode�.

To summarize, the stable solutions calculated by the
pseudodynamics in Eqs. �A4� and �A5� are always stable in
the longitudinal mode direction. Therefore, there is no longi-
tudinal RSB.
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